

стиральная машина «ARISTON DIALOGIC»*

ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ И РЕМОНТ

В. Коляда, А. Кубышкин, А. Смирнов

ЧАСТЬ 2. ЭЛЕКТРИЧЕСКИЕ КОМПО-НЕНТЫ, ДИАГНОСТИКА

И РЕМОНТ

Стиральная машина структурно состоит из следующих электрических компонентов, связанных с тремя электронными платами (рис. 8): мотор, датчик температуры, нагревательный элемент (ТЭН), датчики уровня и проводимости воды, электроклапаны (ЭК), сливной насос, блокиратор дверцы. Органами управления машиной являются руко-

ятка и клавиатура, выдвигающаяся при утапливании рукоятки. Для диагностики и сервисного обслуживания стиральной машины Ariston Dialogic используется специальный пульт дистанционного управления (ПДУ). Через интерфейс машина может быть подключена к внешнему персональному компьютеру.

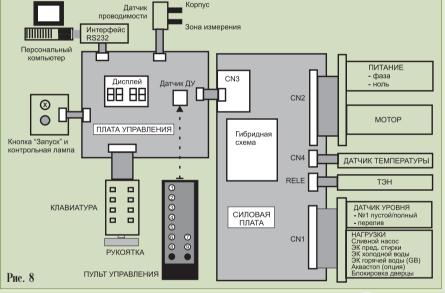
электронные платы

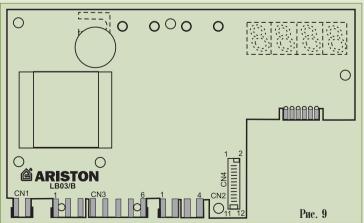
Плата управления (рис. 9) находится в центре передней панели и имеет закрепленную винтами пластиковую крышку, предназначенную для защиты от влаги.

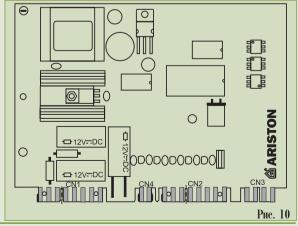
Силовая плата (рис. 10) расположена в задней левой части корпуса, в модульном боксе, и управляет такими исполнительными устройствами, как электроклапаны, мотор, сливной насос, ТЭН.

Силовая плата взаимодействует с платой управления, получает данные с датчика уровня № 1 и датчика перелива, передает сообщения о неисправностях на плату управления.

На плате кнопки запуска и контрольной лампы (рис. 11) расположены кнопка запуска/отмены и светодиод.

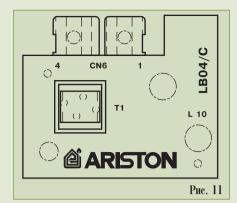

ДАТЧИКИ

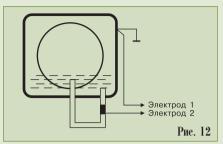

Датчик проводимости (рис. 12) служит для определения жесткости воды, концентрации моющего средства, наличия воды в баке и для оценки качества полоскания.


Уровень воды в баке измеряется датчиком уровня. По уровню воды машина определяет тип ткани и массу ее загрузки.

Температура воды в баке измеряется термистором.

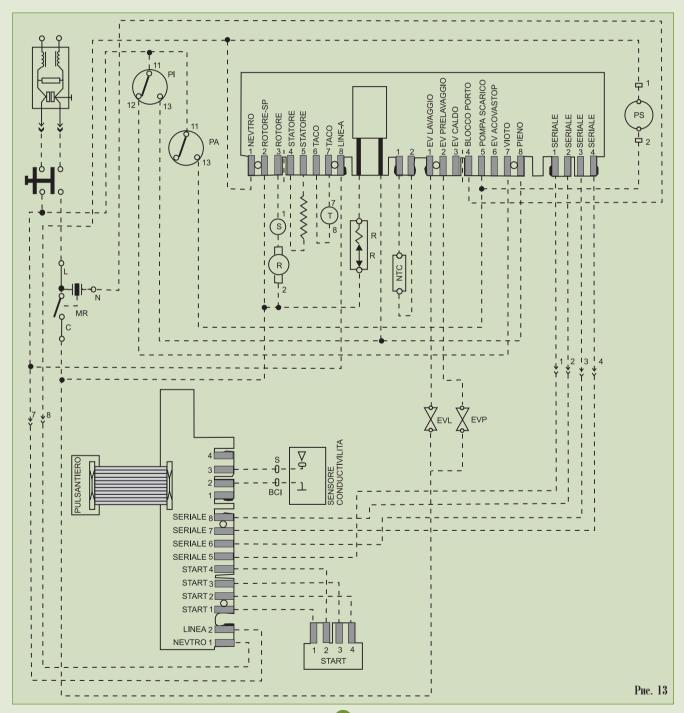
ЭЛЕКТРИЧЕСКАЯ СХЕМА МАШИНЫ приведена на рис. 13.




^{*} Продолжение. Начало в №2, 1999, с. 38-41

САМОДИАГНОСТИКА

Система управления Dialogic выполняет тщательную диагностику



машины. В случае неисправностей на дисплее появляется соответствующий код, который должен быть сообщен оператору сервисной службы владельцем машины. Зная этот код, значительно легче определить причину неисправности. Коды неисправностей приведены в табл. 2.

На рис. 14 показан ПДУ с расшифровкой его индикации, где:

ЭК — электроклапан;

F — цифровая индикация, озна-

Таблипа 2

Сообщение	Неисправность	Вероятная причина
= F01	Разрыв связи между платой управления и силовой платой	Обрыв проводки Неисправна плата управления Неисправна силовая плата
= F02	Блокирован мотор, либо обрыв или короткое замы- кание тахометра, либо короткое замыкание симис- тора	Неисправен мотор Неисправен тахометр Неисправна силовая плата
= F03	Неисправности в цепи измерения температуры воды в баке	1. Обрыв проводки 2. Неисправен датчик
= F04	Отказ сливного насоса или "залипание" датчика уровня №1 в положении "полный"	 Неисправен датчик уровня №1 Блокирован сливной насос Неисправна силовая плата
= F05	"Залипание" датчика уровня №1 в положении "пустой" или датчика перелива в положении "полный"	 Неисправен датчик уровня №1 Неисправен датчик перелива Обрыв проводки Неисправна плата управления
= F06	Проблемы с клавиатурой или рукояткой	Обрыв проводки Неисправна клавиатура Неисправна плата управления

чающая, что датчик уровня №1 находится в положении "полный" (соответственно: Е — "пустой", О — "переполнение");

0.46 — версия программы микропроцессора (встречаются как более ранняя — **0.44**, так и более поздняя — **0.50** — версии).

Машина выпускается в вариантах I (Италия) и U (Великобритания). В варианте U предусмотрено подключение как к холодной, так и к горячей воде.

Диагностика запускается зеленой кнопкой ПДУ.

УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

- 1. Машина не заливает воду
- нажимают кнопку "исполнение" (avvio) ПДУ и ждут, когда за-

горится лампа блокировки дверцы;

- нажимают кнопки 1, 2 и 4 ПДУ для проверки электроклапанов (ЭК);
- если все ЭК работают надлежащим образом, то машина исправна. В противном случае проверяют, есть ли напряжение на контактах неработающих ЭК. Если напряжение есть, заменяют неисправный ЭК, предварительно перекрыв подачу воды к машине;
- если напряжения нет, проверяют проводку и устраняют ее неисправность;
- если же проводка исправна, заменяют силовую плату.
- 2. Не смывается порошок в отделении для предварительной и/или основной стирки
 - нажимают кнопку "исполне-


- ние" (avvio) ПДУ и ждут, когда загорится лампа блокировки дверцы;
- нажимают кнопки 1 и 2 ПДУ для проверки ЭК;
- если все ЭК работают надлежащим образом, то неисправность носит механический характер;
- в противном случае проверяют, есть ли напряжение на контактах неработающих ЭК. Если напряжение есть, заменяют неисправный ЭК, предварительно перекрыв подачу воды к машине:
- если напряжения нет, проверяют проводку и устраняют ее неисправность;
- если же проводка исправна, заменяют силовую плату.

3. Не смывается содержимое отделения для добавок

- нажимают кнопку "исполнение" (avvio) ПДУ и ждут, когда загорится лампа блокировки дверцы;
- нажимают кнопку 4 ПДУ для проверки ЭК;
- если ЭК работают надлежащим образом, то проверяют работу системы распределения моющих средств;
- в противном случае проверяют, есть ли напряжение на контактах неработающих ЭК. Если напряжение есть, заменяют неисправные ЭК, предварительно перекрыв подачу воды к машине;
- если напряжения нет, проверяют проводку и устраняют ее неисправность;
- если же проводка исправна, заменяют силовую плату.

4. Результаты полоскания неудовлетворительные

- проверяют, не заблокирована ли трубка, соединяющая дренаж уплотнения люка и сливной насос. Если трубка заблокирована, устраняют причину блокировки;
- в противном случае проверяют наличие электрического контакта между электродами (корпусом машины и датчиком проводимости) и платой управления;
- нажимают кнопку "исполнение" (avvio) ПДУ и ждут, когда загорится лампа блокировки дверцы;
 - включают любой ЭК для за-

Таблина 3

Thorning o			
Вода	Показание дисплея	Сопротивление R	
Жесткая		R < 17	
Средняя		17 < R < 29	
Мягкая		R > 29	

лива воды и ждут, когда на дисплее появится индикация переключения датчика уровня в положение "полный": F (full);

• нажимают кнопку 7 ПДУ и сравнивают измеренный уровень сопротивления R с указанным в табл. 3.

5. Машина не греет воду

- нажимают кнопку "исполнение" (avvio) ПДУ и ждут, когда загорится лампа блокировки дверцы;
- включают любой ЭК для залива воды и ждут, когда на дисплее появится индикация переключения датчика уровня в положение "полный": F (full);
- нажимают кнопку 6 ПДУ для включения ТЭНа;
 - если температура воды повы-

шается, то машина исправна;

- в противном случае проверяют, есть ли напряжение на контактах ТЭНа. Если напряжение есть, неисправный ТЭН заменяют на новый, предварительно проверив его сопротивление:
- если напряжения нет, проверяют проводку и устраняют ее неисправность;
- если же проводка исправна, заменяют силовую плату.

6. Барабан не вращается

- нажимают кнопку "исполнение" (avvio) ПДУ и ждут, когда загорится лампа блокировки дверцы;
- нажимают кнопку 8 ПДУ для проверки мотора;
- если барабан вращается со скоростью 45 об/мин, то машина исправна;
- в противном случае проверяют, есть ли напряжение на контактах мотора. Если напряжение есть, неисправный мотор заменяют на новый;
- если напряжения нет, проверяют проводку и устраняют ее неис-

правность;

• если же проводка исправна, заменяют силовую плату.

7. Машина не сливает воду

- нажимают кнопку "исполнение" (avvio) ПДУ и ждут, когда загорится лампа блокировки дверцы;
- включают любой ЭК для залива воды и ждут, когда на дисплее появится индикация переключения датчика уровня в положение "полный": F (full);
- нажимают кнопку 5 ПДУ для включения сливного насоса;
- если слив происходит нормально, то машина исправна;
- в противном случае проверяют, есть ли напряжение на контактах сливного насоса. Если напряжение есть, устраняют причину блокировки насоса либо неисправный насос заменяют на новый;
- если напряжения нет, проверяют проводку и устраняют ее неисправность;
- если же проводка исправна, заменяют силовую плату.

БЫТОВЫЕ ХОЛОДИЛЬНИКИ:

нормы отклонения фактических характеристик от

В. Коляда, А. Куликов, Е. Тюняева

роблема соответствия фактических характеристик бытовой техники ее номинальным параметрам часто возникает в практике работы сервисных служб и торгующих организаций при разрешении спорных вопросов с владельцами техники. В настоящей статье авторы продолжают тему сравнения фактических характеристик бытовой техники с номинальными параметрами, нормируемыми ГОСТа-

ми и другими документами [1].

Требования к техническим характеристикам бытового холодильного оборудования содержатся в [2, 3]. Согласно [2] холодильные приборы классифицируются:

- по назначению: холодильники (X), морозильники (M), холодильники (MX);
- по способу получения холода: компрессионные (К), абсорбционные (А);
- по способу установки: напольные типа шкафа (Ш), напольные типа стола (С);
- по числу камер: однокамерные, двухкамерные (Д), трехкамерные (Т).

Кроме того, по способности работать при максимальной температуре Т окружающей среды выделяются классы (до 1988 г. в ГОСТе использовалось слово "исполнение") (табл. 1):

Таблина 1

Оборудование	Класс	T, °C
Х	SN и N ST T	32 38 43
M и MX	N T	32 43

Камеры холодильных приборов в зависимости от назначения классифицируются следующим образом:

- камеры для хранения свежих овощей и фруктов;
- холодильные для охлаждения и хранения охлажденных

продуктов;

- низкотемпературные для хранения замороженных продуктов (НТК);
- морозильные для замораживания и хранения замороженных продуктов (МК);
- универсальные для хранения продуктов в свежем, охлажденном или замороженном состоянии.

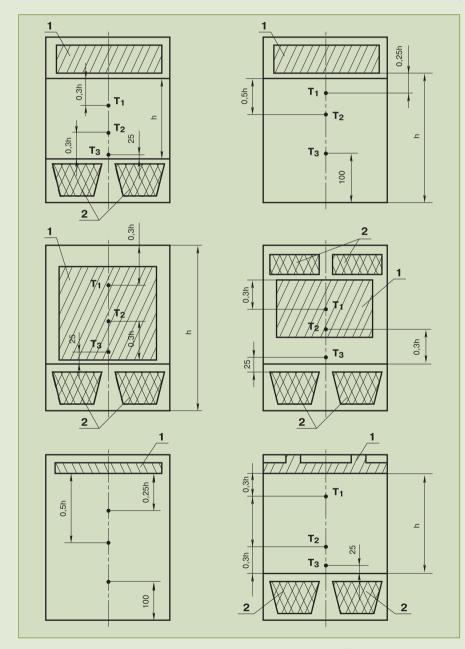
Однокамерные холодильники подразделяют по наличию низкотемпературного отделения (HTO) на холодильники с HTO и без HTO, а также по минимальной температу-

Таблипа 2

Маркировка	t, ℃	
*	-6	
**	-12	
***	-18	

ре t в HTO (маркировка приведена в табл. 2).

Морозильные камеры маркируются дополнительной, четвертой звездочкой, расположенной слева от трех звезд маркировки НТО или НТК.


Температуру холодильной камеры бытового холодильника следует измерять в установившемся состоянии в трех точках Т1, Т2, Т3, указанных на рисунке, термопарами, расположенными, по возможности, в геометрическом центре луженых медных (латунных) цилиндров диаметром и высотой 0,0152 м, а также, по возможности, регистрировать температуру холодильной камеры, которая определяется как среднее арифметическое трех значений температур [2]. Допускается применение других датчиков температуры, обеспечивающих требуемую точность измерения.

На рисунке показаны: 1 — испаритель; 2 — сосуд для хранения овощей.

За температуру в отдельных точках следует считать среднее арифметическое значение максимальной и минимальной температур, определенное не менее чем за три полных периода регулирования.

Температуру хранения замороженных продуктов в морозильниках и холодильниках-морозильниках определяют при температуре окружающей среды 32°C для исполнения N и 43°C для исполнения T.

Температура в холодильной камере на одной из установок терморегулятора в зависимости от класса холодильника должна соответствовать значениям, указанным в табл. 3. При этом температура в НТО должна быть не выше одного из приведенных значений: минус

Таблипа 3

Класс	Температура Т окружающей среды, °С	Температура Тх в холодильной камере, °C	Средняя температура в холодильной камере, не выше, °С
SN	1032	-110	5
N	1632	010	5
ST	1838	012	7
Т	1843	012	7

6°C, минус 12°C, минус 18°C; в НТК, МК — не выше минус 18°C, а в холодильной камере ни в одной из точек измерения не должна выходить за пределы, указанные в табл. 3.

При этом компрессионные холодильники в установившемся режиме должны работать циклично с коэффициентом рабочего времени не более 0,9.

Температура в камере для хранения свежих овощей и фруктов или в ее отделениях не должна быть выше 12° С.

Температура в НТК и МК в режиме "хранение" должна быть не выше минус 18°С.

Характерная температура нагрева корпуса компрессора составляет $80...85^{\circ}$ С в зависимости от модели и мощности компрессора.

Рабочая температура панели компрессора составляет 40...45°C для встроенных изделий и 45...52°C для отдельно стоящих изделий.

Для встроенной техники необходимо наличие вентиляционной решетки под холодильником для создания естественной циркуляции воздуха с целью обеспечения нормального температурного режима работы компрессора.

Согласно [2] корректированный уровень звуковой мощности компрессионных холодильных приборов в дБ должен быть не более указанного в табл. 4.

Согласно [3] корректированный уровень звуковой мощности холодильного оборудования не должен превышать одного из трех значений соответствующих уровней, приведенных в табл. 5. Испытания холодильных приборов проводят в следующих условиях:

- температура окружающего воздуха (20 ± 5) °C;
- относительная влажность воздуха от 45 до 75%;
- напряжение электрической сети (220 ± 4.4) В;
- частота (50 ± 1) Гц.

При определении уровня звуковой мощности холодильное оборудование следует установить на полу или звукоотражающей плоскости испытательного помещения на расстоянии (0.15 ± 0.05) м перед вертикальной звукоотражающей стенкой с коэффициентом поглощения $\alpha \le 0.06$.

Расстояние от прибора до углов помещения должно быть более 1,5 м. Соприкосновение между стенкой и выступающими частями прибора не допустимо. Расстояние от тангенциальных испытуемому образцу плоскостей измерительной поверхности должно быть не менее 1 м.

Испытания следует проводить в установившемся режиме работы образца при номинальном напряжении электрической сети с отклонением не более $\pm 1\%$ и при номинальной частоте с отклонением не более $\pm 1.5\%$.

При проведении испытаний необходимо учитывать максимально допустимое время работы испытуемых образцов согласно инструкции по эксплуатации.

Таблица 4

Вид холодильного прибора	Корректированный уровень звуковой мощности, дБ			
	Общий объем, куб.дм			
	до 200	от 200 до 400	свыше 400	
Холодильники	42	45	55	
	40*	43*	50*	
Морозильники	45	48		
	43*	46*		
Холодильники- морозильники		48 46*	55 53*	
* Рекомендуемые значения				

Таблина 5

Вид электроприбора	Корректированный уровень звуковой мощности, дБ		
	Α	В	С
Холодильники полезным объемом, куб.дм:			
до 200	40	42	53
от 200 до 400	43	45	55
свыше 400	50	55	60
Морозильники полезным объемом, куб.дм:			
до 200	45	45	53
от 200 до 300	48	48	54
от 300 до 400	55	55	60
свыше 400	55	58	65

Специфические условия измерения для холодильников и морозильников:

- приборы испытывают в соответствии с их назначением после начального периода работы, но без охлаждаемых или замораживаемых продуктов, в длительном режиме работы;
- приборы должны работать в течение 6 ч при регуляторе температуры, установленном в среднее положение. После окончания начального периода работы приборы отключают на 10 мин с закрытыми дверями для обеспечения выравнивания давления в агрегате;
- измерение шума следует проводить по истечении 3 мин после повторного включения приборов при температуре окружающей среды (25 ± 3) °C и при постоянном режиме.

Литература

- 1. В. Коляда, А. Куликов, Е. Тюняева. Бытовые стиральные машины: нормы отклонения фактических характеристик от номинальных. Ремонт & сервис, № 2, 1998, с. 44—45.
- 2. ГОСТ 16317 "Приборы холодильные электрические бытовые. Общие технические условия".
- 3. Стандарт СЭВ 4672 "Приборы электрические бытовые. Предельные уровни шума и методы определения".